摘要: Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture, water resources, ecosystems, and human environment. In the Qilian Mountains, northwestern China, flash droughts are becoming more frequently due to the global climate warming. However, the spatiotemporal variations and their driving factors of flash droughts are not clear in this region. In this study, the European Centre for Medium-range Weather Forecasts (ECMWF) Reanalysis v5-Land (ERA5-Land) dataset was utilized to identify two types of flash drought events (heatwave-induced and water scarcity-induced flash drought events) that occurred in the growing season (April‒September) during 1981–2020 in this area. The results showed that the frequency of heatwave-induced flash droughts has decreased since 2010, while the frequency of water scarcity-induced flash droughts has declined markedly. Spatially, heatwave-induced flash droughts were predominantly concentrated in the western Qilian Mountains, whereas water scarcity-induced flash droughts were primarily concentrated in the central and eastern Qilian Mountains. A significantly increasing temporal trend in both types of flash droughts in the eastern Qilian Mountains was found. Meanwhile, there was a decreasing temporal trend of heatwave-induced flash droughts in the southwestern part of the region. Additionally, the influence of two major atmospheric modes, i.e., the El Niño‒Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), on these two types of flash droughts was explored by the Superposed Epoch Analysis. The ENSO mainly influences flash droughts in the central and eastern parts of the Qilian Mountains by altering the strength of the East Asian monsoon, while the NAO mainly affects flash droughts in the entire parts of the Qilian Mountains by inducing anomalous westerlies activity. Our findings have important implications for predicting the evolution of flash drought events in the Qilian Mountains region under continued climate warming.